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1 Introduction

We recall that Rmax = R∪ {−∞}, with operations ⊕ = max, ⊗ = +, and that Rn
max = Rmax× ...×Rmax (n

times) with the operations X ⊕Y = (x1⊕ y1, ..., xn⊕ yn) and α⊗X = αX = (αx1, ..., αxn). A line segment
in max-plus between X,Y ∈ Rn

max would be,

[X,Y ] = {αX ⊕ βY |α⊕ β = e} = {max(α+X,β + Y )| max(α, β) = 0}. (1)

We recall from [1] that a line segment in R2
max, and consiquently Rn

max has a similar case, has one of the
three following forms:
When X ≤ Y and x1 − y1 ≤ x2 − y2, then

[X,Y ] = [X, (y1 + x2 − y2, x2)] ∪ [(y1 + x2 − y2, x2), Y ] (2)

When X ≤ Y and x2 − y2 ≤ x1 − y1, then

[X,Y ] = [X, (x1, y2 + x1 − y1)] ∪ [(x1, y2 + x1 − y1), Y ] (3)

When X � Y and Y � X, then

[X,Y ] = [X,max(X,Y )] ∪ [max(X,Y ), Y ] (4)
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We notice that are first possible line segment is given in the first quadrant, the second possible line segment
is in the second quadrant, and the third line segment is in the third segment. The fourth quadrant contains
the line segments where x1 = y1, x2 = y2, and y1 − x1 = y2 − x2.

A subset S ⊆ Rn
max is said to be convex if [x, y] ⊆ S for all x, y ∈ S. We recall from [1], that S ⊂ Rn

max is a
semispace at z ∈ Rn

max if S is a maximal convex subset of Rn
max avoiding z. For the set S to be a maximal

convex set, then there exist no convex set S′ 6= S, where S ⊂ S′ and z /∈ S′. Note that for finite points we
can take z to be the point (0, 0, ..., 0), since a semispace at any other point results from a translation of the
semispaces around the origin. Nitica and Singer [1] determined that there are exactly n+ 1 semispaces at z,
namely

S0 = {X ∈ Rn
max|0 < max(x1, ..., xn)} = {X ∈ Rn

max|0 < x1}∪...∪{X ∈ Rn
max|0 < xn} = {X ∈ Rn

max|X � 0}
(5)

Sk = {X ∈ Rn
max|xk < max(x1, ..., xk−1, xk+1, ..., xn, 0)}

= {X ∈ Rn
max|xk < 0}∪...∪{X ∈ Rn

max|xk < xk−1}∪{X ∈ Rn
max|xk < xk+1}∪...∪{X ∈ Rn

max|xk < xn}. (6)

In this paper we determine the hemispaces in Rn
max. To do so, we considered the complements of the

semispaces centered at the origin. By [1] these complements are given by

{S0(z) = {X ∈ Rn
max|0 ≥ max(x1, ..., xn)} (7)

{Sk(z) = {X ∈ Rn
max|xk ≥ max(x1, ..., xk−1, xk+1, ..., xn, 0)}. (8)

Since these complements intersects one another at their boundary points, we consider them without bound-
aries, and then determined how we could partition Rn

max into two convex subsets made up of semispace
complements and their boundaries.
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Definition 1.1 A set H ⊆ Rn
max is a hemispace in Rn

max if both H and {H are convex.

Let Si be a semispace and {Si be the complement of that semispace where xi is the greatest variable in the
space and x0 = 0. For notational ease, we refer to {Si/bd{Si in the rest of the paper by {Si.

Definition 1.2 A face of dimension k will be refered to as a k − face for the remainder of the paper.

Definition 1.3 A hyperplane of the form:

x0 ⊕ ...⊕ xn = xm ⊕ ...⊕ xn;m ≤ n (9)

has a boundary hyperplane of:
x0 ⊕ ...⊕ xm−1 = xm ⊕ ...⊕ xn

And has the section where xm, ..., xn > x0, ..., xm−1 filled.

2 Hemispaces in R2
max

We note that {Si is convex with or without the boundary. We also know that semispaces are the building
blocks of hemispaces.

Lemma 2.1 {Si/bd{Si is a minimal non-trivial hemispace.

Proof Let H be a minimal non-trivial hemispace. We first consider H to be a single point, H = {P}; p =
(p1, ..., pn). However, P is not a hemispace since Rn

max/{P} is not convex because there exist points Q =
(q1, p2, ..., pn) and R = (r1, p2, ..., pn) in Rn

max/{P} such that q1 < p1 < r1, so P ∈ [Q,R]. Thus, we consider
adding a point Q to H. To maintain convexity in H, we must have [P,Q] ⊆ H as well. If [P,Q] is not
degenerate (has 2 conecting segments for the case n = 2, then clearly both of those segments must be made
half-lines to maintain the convexity of {H. Otherwise there exist S, T ∈ {H located on the full line containing
one of those segments, clearly a non-empty A ⊆ [P,Q] also has A ⊆ [S, T ]. Now we have two half lines that
start at,

(q1 + p2 − q2, p2) ifQ < P

(p1, q2 + p1 − q1) if P < Q

max(P,Q) if P � Q, Q � P

and extend through P and Q. Note that this creates the boundary of a semispace. Clearly, to maintain
convexity, H must also contain the entire space either above or below these half lines. One side gives a
semispace, and the other gives its complement. Clearly the complement is smaller, which we can make even
smaller by excluding the boundary.
If the segment connecting P and Q is degenerate, then for the case n = 2, either q1 = p1 or q2 = p2. Without
loss of generality, suppose q2 = p2 and q1 > p1, so the line line connecting them is a horizontal line. Clearly
we must extend this segment to a half-line and include the space either above or below it. If we extend it
to the left and include the space below it, we get {S0. If we extend left and include the space above the
line, then it is clear we must also include half-line starting at Q parallel to the main bisector to maintain
the convexity of {H, and we end up with {S2. Finally if we extend to the right, and include below, we must
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also have the half line starting at P , parallel to the main bisector, and we get {S1. If we include above, it is
clear that {H is not convex. The only way to fix this problem is to include the other vertical (or horizontal)
half-line starting at P and the section to the right (or above) it. This is the only hemispace that can be
formed without being the union of semispace complements, but it is clear that these hemispace are larger
then any single semispace complement.

Remark 2.2 Because of this previous lemma, it makes sence to look at the semispaces, and hence there
complements, when trying to determain how a hemispace would work. Let us look at R2

max to get an
understanding of how to form these hemispaces. We notice that in R2

max we have three semispaces and their
complements. Then we are looking at

{S0 = {X ∈ R2
max|0 ≥ max(x1, x2)} (10)

{S1 = {X ∈ R2
max|x1 ≥ max(0, x2)} (11)

{S2 = {X ∈ R2
max|x2 ≥ max(0, x1)} (12)

and their boundaries to form these hemispaces. We notice that {S0 is the negative quadrant with the
boundry of {S0 being the 1− faces (x1, 0);x1 < 0 and (0, x2);x2 < 0 along with the origin.

Example 2.3 The first basic hemispaces in R2
max that we come across is S0 and {S0. What we want to see

is how we can split and distribute the boundary between them such that both S0 and {S0 remain convex
and by that, hemispaces.

Let us define A = S0 and B = {S0 without the boundary. l1 = (x1, 0);x1 < 0, l2 = (0, x2);x2 < 0, and
0 = (0, 0). We immediately have two basic cases were l1, l2, 0 ∈ A or l1, l2, 0 ∈ B.
Now we can see that if both l1, l2 ∈ A then for A to stay convex [l1, l2] ∈ A
[l1, l2] = [(x1, 0), (0, x2)] = {(max(α+ x1, β),max(α, β + x2))}
since x1, x2, α, β ≤ 0 then {(max(α+ x1, β),max(α, β + x2))} = {(0, 0)} which implies that 0 ∈ [l1, l2] ∈ A.
This is symmetric to [l1, l2] ∈ B.

Lemma 2.4 If l1, l2 ∈ R2
max are in the same convex space, then 0 is in that convex space.

Proof The proof of Lemma 2.4 follows directly from our previous example.

Let us now consider the case were l1 and l2 are not in the same convex space. Let l1 ∈ A. Then consider
the line segment [(−2, 0), (2, 0)] with (−2, 0) ∈ l1 and (2, 0) ∈ A.
[(−2, 0), (2, 0)] = {(max(α− 2, β + 2),max(α, β))}
if we let α = 0 and β = −2, then {(max(α − 2, β + 2),max(α, β))} = {(0, 0)}. Which implies that
0 ∈ [(−2, 0), (2, 0)] ∈ A. Similarly, if l2 ∈ A then 0 ∈ A.

Remark 2.5 Notice that this result say’s that if either l1 or l2 ∈ A then 0 ∈ A. So flipping these results
we notice that if 0 ∈ B, then neither l1 or l2 can be in A, therefore they both must be in B. Giving us a
trivial result with the entire boundary in B.

Because of this result and Lemma 2.4 all possible splits of the boundary in R2
max for S0 are:

l1, l2, 0 ∈ A
l1, l2, 0 ∈ B
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l1, 0 ∈ A and l2 ∈ B
l2, 0 ∈ A and l1 ∈ B

We have a similar case when considering S1, {S1 and S2, {S2.

Remark 2.6 It is easy to see that some of these properties for R2
max could be generalized to work for Rn

max.
But as you may notice for the case were n = 2, since we only have three semispace complements, we are
always only seperating one of those complements from the rest. In section 3 we continue to work on the one
section split in Rn

max and in section 4 we look at what will happen if we split more then one section apart,
which can not happen unless n ≥ 3.

3 Spliting the Boundary of one Sector in Rnmax

Recall from [2] that the boundary of {Si is a hyperplane. In this section we consider how to split one of
these hyperplanes between Si and {Si such that we have two hemispaces. Without loss of generality let us
look at S0 and {S0. We know from the last section that for n = 2 if we have the origin in {S0 then all the
conecting one dimentional lines are in {S0. We can actually generalize this result to Rn

max. First let us make
neccesary definitions.

Definition 3.1 X = (x1, x2, .., xn) is a m− face with m < n if there exist exactly m unique coordinates in
X, all non-unique coordinates either are equal to zero or the same xi where xi is one of the unique coordinates.

Remark 3.2 If the non-unique coordinates in X are all dependent on a unique xi then this m − face is
connected to the one dimensional main bisector. If the non-unique coordnates in X are equal to 0, then the
m− face is connected to the negitive octant.

Definition 3.3 An m+ 1− face Y is said to be adjacent to X iff the same m unique coordinates in X are
also unique in Y , and Y has one additional unique coordinate.

Example 3.4 Let X = (x1, x2, x3, 0, 0, 0) and let Y = (y1, y2, y3, 0, y5, 0). X, a 3− face, and Y , a 4− face,
are adjacent because in both X and Y , xi and yi are independant coordnates for i ∈ [1, 2, 3], while x5 is 0
in X and y5 is an independant coordnate in Y .

Remark 3.5 An m− face X can not be adjacent to a m+ k − face Y , where |k| ≥ 2.

Lemma 3.6 If a m − face with m < n is a part of the boundary of {Si, then all adjacent m + 1 − faces
are in {Si.
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Proof Let X be an m− face with m < n, and X ∈ {Si. Let Y be a m+ 1− face and adjacent to X.
Assume Y ∈ Si

We want to show that ∃Z ∈ Si s.t. X ∈ [Y,Z]
Let X = (x1a , x2a , ..., xma

, 0, ..., 0). Then, Y = (x1b , x2b , ..., xmb
, y1, y2, ..., yk), where m + k = n, and

∃yi ∈ Rmax, i ∈ [1, 2, ..., k], yi 6= 0, and yj = 0, j 6= i and j ∈ [1, 2, ..., k].
Let Z = (x1b , x2b , ..., xmb

,−y1a ,−y2a , ...,−yka). Where −yia is chosen s.t. −yia is the same sign as −yi, and
Z ∈ Si.
[Y,Z] = [(x1b , x2b , ..., xmb

, y1, y2, ..., yk), (x1b , x2b , ..., xmb
,−y1a , ...,−yka

)] =
{(max(α+ x1b , β + x1b), ...,max(α+ xmb

, β + xmb
),max(α+ y1, β − y1a), ...,max(α+ yk, β − yka

))}
max(α+ xib , β + xib) = xib ; i ∈ [1, 2, ...,m]
When yj = 0, then max(α+ yj , β − yja) = 0; j ∈ [1, ..., k]
When yj 6= 0, then max(α+ yj , β− yja) = 0, when α = 0 and β = yja if yja < 0 or when α = −yj and β = 0
is yj > 0.
Then X ∈ [Y,Z].

This result immediatly gives a corollary about a one sector split in Rn
max.

Corollary 3.7 If the center is part of the boundary containing only {Si, then we have the trivial hemispace
were the entire boundary is containing only {Si

Remark 3.8 Corollary 3.7 tells us that all non-trivial hemispaces for a one sector split of the boundary is
going have to have the origin part of the boundary of Si. We can recal from Lemma 2.2, that no more the
one line of dimension one can be in the same convex section without the origin for n = 2. This brings us to
are next lemma and a generalization of this result for Rn

max.

Lemma 3.9 If the center and all faces up to dimension m < n are in Si, then no more then one m+1−face
is in {Si.

Proof Let the center and all faces up to dimension m < n be in Si. Let T = the number of m+ 1− faces
that are in {Si. Assume T ≥ 2. Since T ≥ 2 then we can choose two faces of degree m+ 1, E1 and E2 ∈ {Si.
Let E1 = {(x1, x2, ..., xn)|xi 6= 0 for exactly m+ 1 i′s, and xj = xi or xj = 0 for the remaining n− (m+ 1)
points} and E2 = {(y1, y2, ..., yn)|yi 6= 0 for exactly m + 1 i′s, and yj = yi or yj = 0 for the remaining
n− (m+ 1) points} and E1 6= E2.
[E1, E2] = [(x1, x2, ..., xn), (y1, y2, ..., yn)] = {(max(α+ x1, β + y1), ...,max(α+ xn, β + yn))}
Case 1: E1 < 0 < E2 similarly E2 < 0 < E1

Case 2: 0 < E1 < E2 similarly 0 < E2 < E1

Case 3: E1 � E2 and E2 � E1

Case 1: Let α = 0 and β = −max(yi|i ∈ [1, 2, ..., n]) then [E1, E2] = {(max(x1, y1 − yi), ...,max(xi, yi −
yi), ...,max(xn, yn − yi))}. This has at most m unique points since the ith point was changed to 0. Then
∃k ∈ K a p− face with p < m+ 1 s.t. k ∈ [E1, E2]. Therefore, both E1 and E2 cannot be in {Si.

Case 2: Let 0 ≤ xn ≤ ... ≤ x1 ≤ y1 ≤ ... ≤ yn and let α = 0.
[E1, E2] = {(max(x1, β + y1), ...,max(xn, β + yn))}. Since yn > x1 > 0, then ∃β0 s.t. yn + β0 = x1 and
max(xi, β + yi) = xi; yi < yn. Then, [E1, E2] = {(x1, x2, ..., xi, x1, x1, ..., x1)}. Since we made some indepen-
dent variables dependent on x1, then ∃k ∈ K a p− face with p < m+ 1 s.t. k ∈ [E1, E2]. Therefore, both
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E1 and E2 cannot be in {Si.

Case 3: Since E1 � E2 and E2 � E1, then [E1, E2] = [E1,max(E1, E2)]∪ [max(E1, E2), E2]. Let xi > yi; i ∈
[1, ..., r] and yj > xj ; j ∈ [r + 1, ..., n].
Then, [E1,max(E1, E2)] = [(x1, ..., xn), (x1, ..., xr, yr+1, ..., yn)] = {(x1, ..., xr,max(α+xr+1, β+yr+1), ...,max(α+
xn, β + yn))}.
Let r < m+ 1, if r ≥ m+ 1 look at the line segment [max(E1, E2), E2]. Rest of the proof is similar to case 2.

Therefore T < 2.

Remark 3.10 With Lemma 3.6 and Lemma 3.9 we can determain all boundary splits between Si and {Si,
both trivial and non-trivial, for Rn

max by first choosing where our origin lies, and then using the lemma’s to
determain where higher dimensional faces must fall. Once we stubble upon a face that can go on either face,
we choose were we want this face to fall, and once again the Lemma’s show that more higher dimensional
faces will follow. We continue this process until all faces are acconted for. We go over all of the combinatorics
of this later in this paper.

4 Multi-Sector Split in Rn
max

Since Rn
max has n + 1 sectors as mentioned earlier. The first n that can have a multi-sector split would be

n = 3. For looking at how these splits can happen we use two lemma’s, without proof, for a general idea.
We will later show and algebraic result with proof that works for all types of splits in all dimensions.

Lemma 4.1 Let a face have k sectors. Then if all k − 1− faces are bordering that section, then the whole
boundary borders that section.

Lemma 4.2 If all faces up to dimension m < n are bordering the same section, then no more then one
m+ 1− face can border the other section.

Remark 4.3 Lemma 4.1 and Lemma 4.2 give general rules to follow when spliting the boundary of a k
sector split but this leaves a lot of choices undetermained. For these reason we took a different approch
to solving this problem using some set theory and combinatorics. We begin with a lemma showing that
the boundary must stay connected and a line segment on the boundary stay’s on the boundry, while also
introducing some new notation, which will lead us to our main theorem.

Lemma 4.4 Let H ⊆ Rn
max be a hemispace and S ⊆ Rn

max be a k − face. If there exists p ∈ S such that
p ∈ H, then S ⊆ H.

Proof Observe that it suffices to show that for a given q ∈ S, either for each {Si there exists ri ∈ {Si such
that p ∈ [q, ri] or for each {Si there exists si ∈ {Si such that q ∈ [p, si] since this would establish that p and
q must be in the same hemispace. Furthermore, we must only find such ri or si for each {Si that is bounded
by S because if all such {Si are in H (or all not in H), then S is not a boundary of H. We will do this
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by showing that each point in the lines that go through p and are parallel to 1 − faces (the axes or main
bisector) that bound S must be in S. This process will be independent of p, and so once we know that a
half-line going through p and parallel to one 1− face is in H, we can then repeat the the process for a line
parallel to a different 1− face for each point on that half line, thus tracing out a 2− face cross section of
the k− face, and so on until we trace out the entire k− face with half-lines parallel to the k 1− faces that
S is bounded by.
First, suppose S is of the form xk+1 = xk+2 = ... = xn > 0, x1, ..., xk, so p = (p1, ..., pk, p0, ..., p0) where
p0 > p1, ..., pk. To show that every point in S on the half-line that goes through p and is parallel to the xi axis
must also be in H, consider an given point q 6= p on that half-line, so q = (p1, ..., pi−1, qi, pi+1, ..., pk, p0, ..., p0)
where p0 > p1, ..., pi−1, qi, pi+1, ..., pk. Observe that since p and q only differ by one coordinate, we must have
either p > q or p < q. Without loss of generality, assume q > p (i.e. qi > pi); the other case follows from
interchanging p and q. For each j ∈ {k + 1, ..., n} choose rj = (p1, ..., pi−1, qi, pi+1, ..., pk, 0, ..., 0, p0, 0, ..., 0)
where the p0 is the jth coordinate so that rj ∈ {Sj . Thus, max(rj , p) = q, so q ∈ [rj , p].
Now, consider a given q on the half-line through p that is parallel to the main bisector, so q = (p1 +c, ..., pk +
c, p0+c, ..., p0+c). Without loss of generality, assume q > p, i.e. c > 0. Then for each j ∈ {k+1, ..., n} choose
rj = (p1, ..., pk, 0, ..., 0, p0, 0, ..., 0) where the p0 is the jth coordinate so that rj ∈ {Sj . Then max(αrj , βq) = p
for α = 0 and β = −c, so p ∈ [rj , q].
Now, suppose S is of the form 0 = xk+1 = ... = xn > x1, ..., xk, so p = (p1, ..., pk, 0, ..., 0) where
0 > p1, ..., pk. Let q 6= p be a given point on the half-line passing through p and parallel to the xi axis,
so q = (p1, ..., pi−1, qi, pi+1, ..., pk, 0, ..., 0). Without loss of generality, assume q > p, i.e. qi > pi. For each
j ∈ {k + 1, ..., n}, choose rj = (p1, ..., pi−1, qi + 1, pi+1, ..., pk, 0, ..., 0, 1, 0, ..., 0) where the 1 is the jth coordi-
nate so that rj ∈ {Sj . Thus, max(αrj , βp) = q for α = −1 and β = 0, so q ∈ [rj , p]. Finally, for {S0, choose
r0 = (p1, ..., pi−1, qi, pi+1, ..., pk,−1, ...,−1) ∈ {S0. Then max(r0, p) = q, so q ∈ [r0, p].

Remark 4.5 The basic principle that this proof is saying is that if any general point of a k − face is part
of a hemispace, then the entire k− face is part of that hemispace. This also means that you can not split a
k− face between two hemispaces. This fact has been taken for granted up until now, but it is important to
prove for the next theorem.

Lemma 4.6 Suppose S1, S2 are faces in Rn
max of dimension K and L respectively, bordering the same hemis-

pace, with k ≤ l ≤ n. Suppose the highest dimensional boundary of S1 and S2 is S3 with dimension m ≤ k.
Then for p ∈ S1 and q ∈ S2, the segment [p, q] ⊆ S1 ∪ S2 ∪ S3 and [p, q] ∩ Si 6= ∅; i ∈ {1, 2, 3}.

Proof For notational purposes, consider 0 to be another variable xi, so that there are a total of n + 1
variables. By permuting variables if necessary, observe that S1 is of the form
xk+1 = xk+2 = ... = xn = xn+1 > x1, ..., xm, xm+1, ..., xk and S2 is of the form
xm+1 = ... = xk = xl+k−m+1 = xl+k−m+2 = ... = xn = xn+1 > x1, ..., xm, xk+1, ..., xl+k−m. Thus, S1 has k
free variables {x1, ..., xk} and S2 has l free variables {x1, ..., xm, xk+1, ..., xl+k−m}, and they share the free
variables {x1, ..., xm}. Hence p ∈ S1 is of the form p = (x1, ..., xk, x0, x0, ..., x0) where there are k x0s and
q ∈ S2 is of the form q = (y1, ..., ym, y0, ..., y0, yk+1, ..., yl+k−m, y0, ..., y0) where there are k −m y0s between
ym and yk+1 and n+1−(l+k−m) y0s after yl+k−m, where x0 > x1, ...xk and y0 > y1, ..., ym, yk+1, ..., yl+k−m.
Without loss of generality assume x0 > y0, and let d = y0 − x0. Let α = 0, then max(αp, βq) ∈ S1 ∀β ≤ 0.
Let β = 0, then max(αp, βq) ∈ S1 ∀α > d, max(αp, βq) ∈ S3 for α = d, and max(αp, βq) ∈ S2 ∀α < d.
Thus, by definition of line segments, [p, q] ⊆ S1 ∪ S2 ∪ S3 and [p, q] ∩ Si 6= ∅; i ∈ {1, 2, 3}.

Remark 4.7 As mentioned earlier, Lemma 4.6 shows that the line segment between any two boundary
points goes through the face that is the union of those two points. Now consider the set A = {0, 1, ..., n}
and it’s powerset P (A) = {∅, {0}, ..., {1, 2, ..., n}, A}, where {i} implies that xi > 0, x1, ..., xn and {i, j, k}
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implies that xi = xj = xk > 0, x1, ..., xn, also x0 = 0. This means that ∅ is the whole space Rn
max and A is

the center, in our case the origin. Now since we have no reason to consider the entire space we introduce the
set B = P (A)/∅.

Theorem 4.8 H ⊆ B is a hemispace iff H and B/H are closed under unions.

Proof Let H be a hemispace, this implies that H in convex and that all line segments in H remain in H.
This means that if we take two points in H, by Lemma 4.6 and the fact that H is a hemispace, the union
of the two planes that those points were on is in H. Since H is a hemispace the B/H is a hemispace, then
B/H is also closed under unions.
Let H and B/H be closed under unions. Then for any two points in H the line segment between them stay’s
in H by Lemma 4.6. Similar for B/H. This implies that H and B/H are convex. Since H and B/H are
convex, then they are both hemispaces.

Remark 4.9 This theorem is not only true for a multi-section split but it can also be applied to a one
section split. This gives all possibilites for all types of splits. In the next section we work on trying to count
how many possible splits we have and how fast the number of splits grows as n grows.

5 Combinatorics

Corollary 5.1 In Rn
max there are exactly 2f(n) hemispaces at a finite point, where the function f is defined

recursively by f(0) = 1 and

f(n) =

(
n+ 1

1

)
f(n− 1) +

(
n+ 1

2

)
f(n− 2) + · · ·+

(
n+ 1

n− 1

)
f(1) +

(
n+ 1

n

)
f(0) + 1. (13)

Remark 5.2 The function f calculates the number of hemispaces that contain the origin. Thus, in order
to calculate the total number of hemispaces we must multiply by 2 to count their complements as well.

Proof We will establish the corollary by induction on n. Clearly f(1) = 3 since the hemispaces in Rn
max

that contain the origin are the closed half-line to the right, closed half-line to the left, and the whole space.
Now, suppose the formula holds for n− 1 and we must show that it holds for n. Suppose H is a hemispace
in Rn

max containing the origin and G is its complement, and we will determine the total number of ways to
construct H. Since the origin is in H, it follows that only one 1 − face can be in G since having any two
1 − faces in G would also require G to contain the origin to maintain convexity. Observe that there are(
n+ 1

1

)
1− faces in Rn

max that can be in G. Once a 1− face is chosen to be in G, then by the Theorem

we know that every face containing the variable that is not in the 1− face must be in H since having any
of these faces in G would also require the origin to be in G to maintain convexity. Thus, finding the total
number of hemispaces containing the origin now simplifies to an equivalent problem in Rn−1

max , where G now

contains the ”origin” (the 1 − face). Hence, there are

(
n+ 1

1

)
ways to reduce the problem to a n − 1

dimensional problem, but the number of hemispaces in Rn−1
max is given by f(n − 1), so this accounts for the(

n+ 1

1

)
f(n− 1) term.

Alternatively, H could also contain every 1−face. In this case, there can be no more than one 1 dimensional
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in G since, by the Theorem, putting any two 2−faces in G would also require either the origin or a 1−face

to be in G to maintain convexity. Thus, there are

(
n+ 1

2

)
2 − faces that can be chosen to be in G, and

doing so simplifies the problem to the case in Rn−2
max . This accounts for the

(
n+ 1

2

)
f(n−2) term. Again, we

could also choose for every 2 − face to be in H. Following this formula, it is clear that there are

(
n+ 1

d

)
ways to simplify the problem to the case of Rn−d

max , which accounts for all the terms but the last ”1”, which
represents choosing to put every face in H, i.e. the trivial hemispace.

Remark 5.3 Using this equation to find the number of hemispaces we get a sequence of numbers starting
at f(0) = 1. This sequence grows exponentially fast, it is also same sequences as the Ordered Bell Numbers
excluding the first term of that sequence.

6 Hemispaces that are not Semispaces

We know from [2] that the closure of a hyperplane is a hemispace. It is also clear that a hyperplane that
uses all variables availiable is a semispace or the boundary of a semispace. When each variable appears only
once we have the boundary of a hemispace.

Example 6.1 A basic boundary in R2
max is x1⊕x2 = 0. This is the boundary of the negitive quadriant and

a semispace.

In this section we will look at what happens when we don’t use all of the variables, and what the boundaries
look like in this case. In R2

max we only have three hyperplanes that we can look at:

x1 = 0

x2 = 0

x1 = x2

These are very basic lines but they do form the boundary lines of hemispaces in R2
max.

Remark 6.2 As with the rest of this paper we want to look at what the hemispaces of this form would look
like and how we could split the boundary, if at all, to have them remain hemispaces. It is very clear from
our example that if we have a hyperplane, like in the example, with only two variables. Then the boundary
if only one n− 1− face. Since we have proved earlier that one point in the face being part of the boundary
means the whole face is in the boundary, then we can see that if there is only one face for the boundary,
then we only have the to trivial cases of the entire boundary being with one or the other sections.

Definition 6.3 A hyperplane of the form:

xi ⊕ ...⊕ xm = xk ⊕ ...⊕ xm; 0 ≤ i < k ≤ m < n (14)
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is a hyperplane in Rn
max with the boundary faces following the hyperplane:

xi ⊕ ...⊕ xk−1 = xk ⊕ ...⊕ xm

and the section where xk, ..., xm > xi, ..., xk−1 is filled.

Lemma 6.4 Let x0, x1, ..., xn be the variables in Rn
max, then any hemispaces (after permutating variables if

necessary) in the form:
xi ⊕ xi+1 ⊕ ...⊕ xi+m = xj ⊕ xj+1 ⊕ ...⊕ xj+t (15)

where i + m < j and m + t < n − 1, then the hemispaces with this hyperplane as a border acts exactly like
hemispaces in Rm+t+1

max with sections that are the union of semispace complements.

Remark 6.5 Since the space is going from n→ m+ t+ 1, then every dimensional space in the boundary of
dimension k is treated as if it is a k − ((n+ 1)− (m+ t+ 2))− face. Now that we know how a hyperplane
with 2 ≤ k ≤ n+ 1 variables acts, it is important to know how many different hyperplanes there can be with
k variables in dimension n (f(k|n)). The formula for that is:

f(k, n) =

(
n+ 1

2

)(
n− k + 2

1

)
+

(
n+ 1

2

)(
n− k + 3

2

)
+ ...+

(
n+ 1

2

)(
n− 1
k − 2

)
(16)

Where f(2, n) = f(n+ 1, n) =

(
n+ 1

2

)

7 Points at −∞

After reordering the coefficents of the variables as needed, let a0 = a1 = ... = al = 0 > −∞ = al+1 = ... = an.
Then any hyperplane of the form:

a0x0 ⊕ ...⊕ amxm ⊕ al+1xl+1 ⊕ ...⊕ akxk = am+1xm+1 ⊕ ...⊕ alxl ⊕ ak+1xk+1 ⊕ ...⊕ anxn (17)

With m < l < k < n, can be reduced to:

x0 ⊕ ...⊕ xm = xm+1 ⊕ ...⊕ xl (18)

Since xi ⊕ asxs = xi with i ∈ [0, ..., l] and s ∈ [l + 1, ..., n].

Remark 7.1 In this case we have similar results to what we had in section 6. The main difference is, instead
of all of the k − faces dropping down in dimension, we now are only focusing on the l dimensional cross
section where xl+1 = ... = xn = −∞. This cross section follows the same rules with the splitting of the
boundary as the rest of the paper did however, all of the higher dimensional faces that are not split have the
ability to belong to either hemispace with no restrictions. Since these higher dimensional faces are not split
and can belong to either hemispace, because that would still keep them convex by our earlier definition, we
multiply our total number of hemispaces ”2f(n)” by two. So for this case we would have 4f(l) hemispaces,
including complements.
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Any hyperplane boundary of the form:

a1x1 ⊕ ...⊕ alxl ⊕ ak+1xk+1 ⊕ ...⊕ anxn = al+1xl+1 ⊕ ...⊕ akxk (19)

With l < k ≤ n, can reduce to:
x1 = x2 = ... = xl = ... = xn = −∞ (20)

Since we have that x1 ⊕ ...⊕ xl = max(x1, ..., xl) = −∞.

Remark 7.2 The hemispace in this situation would be x1⊕ ...⊕xl > −∞ in the l dimensional cross section
with the point (−∞, ...,−∞) as the boundary point. Leaving only the trivial hemispace of the whole space
without the point and the whole space with the point. Once again the space outside of the cross section
does not split and can belong to either hemispace with effecting convexity.

The final situation is when all the coefficents are equal to −∞.
Then all of the variables are equal to −∞.

Recall from [1] that this situation will give us the semispace in Rn
max:

S(−∞) = Rn
max/{(−∞, ...,−∞)}. (21)

The boundary of this semispace is simply the point (−∞, ...,−∞). Since we obviously can not split a
point we are left with only two trival hemispaces. Either this boundary point is with the semispace, and we
have the whole space, or it is not with the semispace and we have S(−∞) and {S(−∞) as our two hemispaces.

Now consider the following hyperplane boundary:

x0 ⊕ ...⊕ xi ⊕ ai+1xi+1 ⊕ ...⊕ amxm = xm+1 ⊕ ...⊕ xl ⊕ al+1xl+1 ⊕ ...⊕ ajxj (22)

Where i < m < l < j and ak = −∞ ∀k

This is a hyperplane boundary that is missing some variables and has some coeffiecents equal to −∞. First
follow the rule for having coefficents equal to −∞ and take the n − ((m − i) + (j − l)) dimensional cross
section where xi+1 = ... = xm = xl+1 = ... = xj = −∞. Then follow the rule for not having all the variables.

So the cross section goes from acting like a Ri+(l−m)+(n−j)
max space to a Ri+(l−m)

max space.
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